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A Binary Coherent Optical Receiver
for the Free-Space Channel

V. A. Vilnrotter

Telecommunications Systems Section

The free-space channel is an ideal medium for communicating by means of spatially
and temporally coherent optical fields. Here we derive the structure of a maximum
a-posterioti optical homodyne receiver for binary antipodal signals. The effects of
background radiation and phase referencing errors on receiver performance are also
examined. It is shown that this receiver structure is relatively insensitive to random phase
errors, while moderate background radiation has virtually no effect on receiver
performance.

|. Introduction

The structure of a binary optical receiver for processing spatially and temporally coherent optical fields is derived, based on the
maximum a-posteriori (MAP) decoding criterion. The effects of background radiation and phase error on receiver performance are
also examined. The receiver structure is shown in block diagram form in Fig. 1. The received field f,() is assumed to be in the form
of a coherent plane wave. The optical antenna consists of a lens (or properly shaped mirror) of total collecting area (4, + 4,),
which focuses the captured field towards the active surface of the photodetector. A fraction of the captured field is diverted
to the phase-estimator subsystem by the beam splitter B,, with power transmission factor T, = A,/(4, + 4,), while only a
negligible fraction of the received field is lost in propagating through the beam splitter B, (power transmission factor T, < 1),
which is used to spatially combine the received and local fields. The total signal power reaching the detector therefore appears to
have been collected by an effective collecting area A4,. The output of the phase estimator subsystem is a continuous estimate
of the received phase, §,(¢), which is used to control the phase of the local laser. The local optical field combines with the received
field on the surface of B, and the sum field, composed of the reflected portion of the local field and the transmitted part of the
received field, propagates to the active surface of the photodetector. Even though only a small fraction of the local field is
reflected by B,, this is usually of little concern since generally ample local power is available. It is further assumed that the local
field is processed so that the spatial distribution of the local and received fields over the detector surface are identical.

It is well known that if the amplitude of the local field is sufficiently great, then the effects of thermal noise generated within
the receiver are suppressed, and shot-noise limited operation is achieved (Ref. ). Assuming arbitrarily large detector bandwidth,
the detector output can therefore be modelled as a point process with average rate determined entirely by the optical power of
the detected local and received fields. An optical filter (with bandwidth Av Hz), a polarizer, and a spatial filter are also employed
to reduce the intensity of the background radiation reaching the photodetector. To minimize the average bit-error probability, the
output of the photodetector is processed by a MAP decoder. The decoder structure derived here is the MAP decoder only for the
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case of negligible phase error and background radiation. However, the performance of this receiver in the presence of random
phase errors and background fields will also be examined.

Il. MAP Receiver Structure

The received optical field is assumed to be in the form of a linearly polarized plane wave, normally incident on the receiver
aperture. Therefore it can be represented entirely in terms of its temporal characteristics as

£ = a,p(t) exp [i(wt + ¢ ()] (D

where p(f) = (-1)*1, i = 0, 1 over the interval (0, 7), a, is the real received field amplitude, w is the radian frequency of the
optical field, and ¢,(¢) is a random phase process due to phase instabilities w1th1n the transmitter laser. The local field can be
referred back to the receiver aperture and represented as

£, = a, exp [t + 6, ()] @

where again ¢, is the (real) local field amplitude and ¢, (¢) is a random phase process due to phase variations within the local laser,

The photodetector responds to the total optical power collected over its active surface The count intensity at the output of
the photodetector is due to the total power generated by the sum of the received and (equivalent) local fields over the receiver
aperture (with effective collecting area 4,), and can be represented as

n(e) = adIfO)+f,OF = ad, {ai +a2 +2a,a,p(f) cos ¢e(r)} » , 3

where o = n/hv (77 is the detector quantum efficiency, % is Planck’s constant, and » = w/2n is the optical frequency) and ¢.(t) =

¢,(t) - ¢, (2) is defined as the phase-error process. If a sufficiently small phase-error can be maintained, then we can let cos
$.(r) = 1. Since p(¢) takes on the values 1 (depending on the binary hypothesis), the count-intensity is seen to be the sum of a
constant count-rate due to the local and received fields, and a hypothesis-dependent rate that is either added to or subtracted
from the constant level. If background radiation can be ignored, then the total count over each synchronous -second signaling
interval can be modeled as a Poisson random variable, with average count

T

K, = a4, n(tlH)dt = a A7 {az +a? + 2(- 1) aLar}; i=0,1 (4)

{
]

where H, denotes the i-th hypothesis.

It is well known that the bit-error probability is minimized if a maximum a-posteriori (or MAP) decoding strategy is employed.
For equilikely hypotheses, the MAP decoder decides on the basis of the log-likelihood test

H,

n[P(kIH,)] z fn[P(kIH )] ©)
H,

where k is the observed count, with probability density
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K¥ g,
P(kIH) = 7’1 e !

©)

and the average counts K are defined by Eq. (4). Substituting Egs. (4) and (6) into Eq. (5) yields the test

H,
>
kK, - K, < knK, - K,
=h
or, equivalently
H
1
> Kk
< @K, -k, 27
H,

Q)

®

Equation (8) is seen to be a simple threshold test. The MAP decoder therefore observes the total count at the end of each 7-second
interval, and selects on the basis of a threshold comparison. Note that for ¢, <<a, (which is generally the case) we can write

’ 2al’ 2ar 4ar
QnKl—QnK0=Qn 1+a_ - n - —
L

L a, a
from which it follows that

= 2
Th = aAraL'r

Therefore, the threshold is the average count due to the local field over the counting interval.

€

(10)

The performance of the binary homodyne MAP receiver can be obtained by summing the count random-variables above and
below threshold. Assuming that T, is not integer-valued, and defining € as the greatest integer contained in T, the average

bit-error probability becomes

= K* < KF ' Fl+eK) 7v(1+eK)
1 0o -k 1 -K _ 1 b r o
P(E)=7[Z e ot z: e 1] ‘E[ el * el (1

k=g+1 k=0

-t (a—-1)
'z, x) =f e 0 ar
x .

where
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and

x
~t t(a—-l)

y(a,x) = dt

This expression does not yield to further simplification by analytic means. However, we can invoke the Central Limit Theorem,
and argue that since the average counts K, are large, each observed count can be considered the sum of a large number of
independent Poisson random variables, and therefore we can approximate the discrete sums in Eq. (11) by integrals of the normal
density (with mean and variance K). Defining the random variables y; as

yi= = i=0,1 (12)
13 Ki
we obtain
1 1 « ~y,-2/2
PE) =5 E ¢ . (13)
2 Vol
i=0 Ty
T, K,
T, = -1 —\/T—_l_ =V 4K . (14)

where we again assumed that ¢,/a; << 1 and K¢ = oeAraf'r is the average count due to the signal field. This expression can be
written in terms of the function Q(u), where

o0

-1 6212
Q) Vel B ap (15)
Substituting Eq. (15) into Eq. (13) yields
PE)=~Q (ViKy) (16)

It is clear, therefore, that when background radiation and phase estimation errors can be neglected, the performance of the
homodyne receiver depends exponentially on the sum of the count-energies in the binary signals, 2K . This can be seen from the
asymptotic upper bound

o) <(21ru2)_1/2e"“2/2 (172)
or
0 WAK ) < (8K ) /2 72K, (17b)
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Receiver performance for the ideal case discussed here is shown in Fig. 2. Next we examine the effects of background fields on
receiver performance.

lll. The Effects of Background Fields on Receiver Performance

To assess the effects of background radiation on receiver performance, we shall represent the background radiation in complex
form as (Ref. 2):

b() = [B,(5)- jBD)] e/ (18)

where B, (¢) and By(t) are uncorrelated, zero mean, narrowband Gaussian noise envelopes with two-sided spectral level V. If the
optical detector is preceded by a narrowband optical filter of bandwidth Ay Hz, then the first and second moments of the noise
field become

E@] =0 : (192)
E[b(®1P] = E[BX(®] + E[BX(r)] = WV, Av (19b)

For homodyne detection, the detector responds to the total optical power generated by the sum of the local, received, and
background fields. Assuming that phase-errors can be neglected, and that the amplitude of the local field is much greater than
either the amplitude of the received field or the standard deviation of the noise field (collected in a single spatial mode) the
count-intensity at the detector’s output can be represented as

n(t) = ad,le; +a,p@)+B &)~ BN ~ad, 4] +2a; (0,p() + B ()] (20)

The use of a narrowband optical filter generally ensures the validity of this approximation. It is apparent therefore that with
negligible phase-error, the detector responds to the local field, the signal field, and the in-phase component of the noise envelope.
The average count at the end of each 7-second signaling interval is the time-integral of the count-intensity process

= 2 _1Nitl
K = aAraL'r+( 1" 2a,a,mad, +y D

1
where we define the (Gaussian) random variable y as the integral of the background-induced noise process

T

y = 20a;A, B () dt 22)

Clearly, E[y] = 0. The variance can be evaluated by writing 2 as a product of integrals, and taking the expectation over the
integrand:

E[y®] = 4a’d} 4] J'

0

d, f d¢,E [B(,) B,&,)] = 4a’aa? f dt, f d,R (&, - €,) (23)
0 0 0 :

where we define the autocorrelation function R () as
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Av[2
R,(§) =N, f e/*S df = N Av [_Sl_ﬂ;%%_”fl] ”

Av/[2

Letting { = ¢, - ¢,, Eq. (23) can be rewritten as

oo

Ely?] = 40?427 J (1—%‘) R (§) d ~4a?a2 A’ J' R,()ds = 4a%a>A2N A d? (25)

-7 —00

T

In ‘evaluating the first integral of Eq. (25), we made use of the fact that the coherence-time of the noise envelope is much smaller
than the signaling interval, 7.

The performance of the homodyne receiver can be evaluated by again invoking the Central Limit Theorem, approximating the
sum of the Poisson density (conditioned on y) by a properly defined integral of the normal density, and averaging over the density
of y. Since y is Gaussian with zero mean and variance o;, the average bit error-probability becomes

o 2,2 2
! . p e—(xl-(Th—m+y)) 12T, ~m+y) ;
dx

PE) =5 dy T oi . J2n(T, - m +y) 1

Tha =iy =Ty + m+ YN UT, + m +3)

* ¢ 2@, fmtyy dxz‘ (26)

where
m = 2chrmLar

Th2 = (_m_y)/\/m

If we make the change of variables

_xl—(Th—m+y)
1 JT,~mty

(272)

Xy~ (T, +m+y). 27
Z =
2 NT,tm+ty
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then Eq. (26) can be written as

o0 2., 2

1 e.y /203’ m-y m+y

P(E) = > dy Ve Q T tQ 72 (28)
—oo "% VT, (1+—mTy) VT, (1—”’———"3’)

h Th

where Q(+) is defined in Eq. (15).

The Q (+) functions can be expanded as

A m-y m-y m-y
g, =0 =0 [1+ +] (292)
‘ w—(-m_-_y)‘” («T— 2T, ) a
h T,
A mt+y - mty _m+y ..
s ) ofez (-5 ) -
n T, ‘

Note that (m * y)/A/Ty, is a function of ,, but not of (a,/a; ), while (m + »)IT,, is a function of (@,/a, ). If we hold 4, fixed,
then as (a,/a, )~ 0, (m * V)T, = 0 as well, whereas (m + y)/</T, remains constant. Therefore, as (z,/a; ) = 0, the bracketed term
on the right-hand side approaches one, i.e.,

h

mry . ... '
[11 e ]—»1 (30)

and the approximations

0, = Q(\";Tj_y_) (312)
h

o~ mty 31b
0, Q(\/ﬁ) (31b)

become valid. Note that these are exactly the results we would have obtained if the inner integrals in Eq. (26) were integrals of
Gaussian random variables with mean (T}, + m + ), and variance T},. Substituting Eq. (31) into (28), averaging over y, and making
use of Egs. (10) and (25) yields the limiting form

P(E) =~ @ (32)

in the limit as (a,/a; ) = 0.
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It is perhaps more meaningful to relate receiver performance to the noise-field parameter K, = 204 N, AT, which is defined as
the average number of counts generated by a multimode noise field at the output of a direct-detection receiver with effective
collecting area 4,. When expressed in terms of K, the error probability of the homodyne receiver becomes

KS
P(E)QQ( 1+5)

(33)

|

|
i
a
£
=

Note that the use of very narrowband optical filters for background suppression is not required, since 8 is not a function of Av.
The optical filter bandwidth must be narrow enough only to guarantee that Eq. (20) remains valid.

The ability of the homodyne receiver to suppress background radiation is evident from Eq. (33), since in typical applications
the product of the optical bandwidth Av and the bit duration 7 is a very large number (Avr >> 1). This implies that the
performance of the homodyne receiver remains unaffected by background radiation, even when operating in relatively high-
background environments corresponding to K, >> 1. In contrast, the performance of receiver structures that direct detect the
noise field deteriorate significantly when background fields of comparable intensity are present (Ref. 1).

The effect of background radiation on receiver performance is shown in Fig. 3, as a function of the noise parameter 6. Note
that over the range of error-probabilities considered, P(E) remains essentially unaffected by background radiation until the noise
intensity becomes so great that & exceeds ~0.1. In typical applications, Av > 3 X 10'! Hz (corresponding to an optical
bandwidth of AX 3> 10 A at a wavelength of A = 1), while the bit-duration is generally greater than 107 seconds; this implies
that the background field must be intense enough to generate a large number of equivalent direct-detected counts (K, 2 15) over
the bit interval. In well designed receivers, background fields of this intensity are encountered only if the Sun, or other bright
interference, is directly included in the receiver’s field of view (Ref. 3).

IV. The Effects of Phase-Error on Receiver Performance

When the received field is corrupted by background radiation, and the effects of phase error also have to be taken into account,
the count-intensity becomes

n() = ad, [a} +2a,a,p(t) cos 9,(t) + 2a, (B,(¢) cos ¢,(¢) + B (¢) sin ¢ ()] (34

The count intensity is therefore influenced both by random phase-error, and by random background noise. If we assume that the
phase error is narrowband compared to both the modulation and the noise envelope, then the phase error can be considered
constant over the signaling interval, and treated as a random variable. The noise term now contains in-phase and quadrature
components weighted by sinusoidal functions of the phase error. Conditioned on a given phase error, the count intensity becomes

K(9,) aArdiT + 2(—1)i+‘1 a,a,70d, cosd, +y

T

=
H

204 0, (cos 9, Bc(t) dt+sing, B (?) dz‘) (39)
0

0
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Clearly, ¥ is a zero-mean Gaussian random variable, with variance 02 = 4a2azAfN°T, exactly as before. The conditional error

probability, P(El¢,), is therefore given by an expression similar to Eq. (33), but with 3K replaced by 3K cos ¢,

K
PEIs,) = o\ [r¥s oo ¢e) (36)

The bit-error probability is the average of the conditional error-probability over the density of the random phase error:

¢€
4K
PE)=Q {75 cos o, 37

The probability density of the phase-error can often be modelled in terms of the parameterized Tikhonov density (Ref. 4):

80;2 cos ¢,
p(¢,) = —— lg,I<nm (38)
2nl, (0;2)

where 10(022) is the modified Bessel function of zero order, argument o;z, and where ag is roughly the variance of the phase error
for OZ << 1. Numerical integration was employed to evaluate Eq. (37), using the phase error density of Eq. (38). Receiver perfor-
mance in the presence of phase error, but with negligible background interference, is shown in Fig. 4a. It is apparent that phase
error effects do not become significant until the rms phase error exceeds 0.14 radians (corresponding to og > 0.02) in the range of

error probabilities considered: therefore, we can conclude that the p.e’rformance of the homodyne receiver is not very sensitive to
phase error effects.

The effects of background radiation and random phase errors are shown in Fig. 4b, corresponding to 8 = 0.1, or K, = 0.2 Avr.
We emphasize that since Av7 is generally a large number, 6 = 0.1 implies very intense background radiation. However, since the
background radiation enters the error-probability expression only as /T+5 in Eq. (33), even relatively high-intensity radiation
has little effect on the average bit-error probability, as can be seen by comparing the performance curves of Figs. 4a and 4b.

V. Summary and Conclusions

The structure of a coherent binary optical MAP receiver has been derived, and the effects of background radiation and phase
estimation errors on receiver performance were evaluated. It was found that random phase errors do not affect the performance of
the coherent receiver significantly, as long as the standard deviation of the phase error remains less than roughly 0.14 radians (or 8
degrees). It was also shown that background radiation is effectively suppressed by the optical homodyne receiver: Significant
deterioration in receiver performance is observed only in the presence of extremely intense background fields. The most notable
characteristic of the binary optical homodyne receiver therefore appears to be its ability. to achieve quantum-limited performance
in high-background environments, provided that sufficiently accurate estimates of the received phase can be obtained.
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Fig. 4. Receiver performance in the presence of phase error: (a) negligible background;
(b) high-intensity background




